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Abstract

‘A method is proposed for the estimation of a general
class of scalar linear time series models. The model takes the
form of a stochastic difference equation for the dependent variable
with exogenous variable inputs, and the disturbances are autocorrelated
through an autoregressive moving average process. In the present
paper an asymptotically efficient yet computationally simple
estimation procedure (in the time domain) is derived for this model.
The resulting estimator is shown to be asymptotically equivalent to
the maximum likelihood estimator and to possess a limiting multi-

variate normal distribution.
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1. INTRODUCTION

We consider the estimation of the parameters in the model

r k
(1) Yo = & G, ¥ « ZP.X . + 1
t =1 s Kb /o 4 Tt o i t?
(2) § g ! (t 1
B, = u = €. + T Y,€ P ISR B o SRR
t 121 17t-1 t {uq 1 E-1 Ry o )

With the use of the lag operator £ such that £iyt = Y¢_q2

model can also be written as

K
(3) Al)y, = Z Byx., + u,,
) S e S
where A(£) =1 -ali'—...-af£r, and
(4) ¢(£)ut - T(i)et,

where ¢(=!.)=1-¢1 - -¢p=fp, I'(L) = 1+vl£+...+vq£q.

Assumptions used in the estimation of this model are

the

! the € are independent and identically distributed with mean
t

2
and common variance o ,

(11) all roots of A(z)=0, @g(z)=0, and T(z)=0 are greater

than 1 1in absolute value and there are no roots common
to the three equations,

(111) the exogenous variables x
which satisfy -

T
1
1im - til Xtom,1%t4n, 3 = °1z(n-m) =04, (m-n)

T o

ty are nonstochastic sequences
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2.

exists for m,n=,...,-1,0,1,..., and 1i,j=1,...,k, with

0;1(0) > o.

These assumptions imply the following:

o0 .
(iv) the infinite series A(z)'1 = Z xizi, (d(z)'1 = 2 #,z7, and

0 i=0

2

I‘(Z)”l = 6,z° all converge for |z|<1+4, 4>0,

0

) ™M 8

i i

(v) the endogenous variable y, can be expressed as the "steady
state solution" to the difference equation (3) as
[} o0

S B.id X + 2 kW
1 J=O i J t'-j)i J=O J

X -1 -1
(5) vy¢= izgisi!&(ac) Xeq + A() Ty =

N ™Mx

>
1 t-J

while the disturbance u can be expressed as the stationary

t
solution to the autoregressive moving average equation (4) as

(vi) there exists a spectral distribution matrix Fx(x)= {an(x)},
T
7 eihry

: - |
o mn

such that p__(h) = A), (myn=1,...,k; h=0,1,...)
mn

T
This can be expressed more compactly as P(h)= r eihxde(x),
Yot

where P(h) denotes the matrix whose (m,n)th element is o _ (h).
(See Hannan [14], Chapter 2, or Anderson [3], Chapter 7, for

detalls concerning this assertlion.)

-, - ™ B e
o e o ; .




Several techniques have previously been introduced for
estimating special cases of the above model (3)-(4). For example,

when 8;=...=8,=0 and #(z) =1 the model reduces to

A(=£)yt = F(i)et,

the classical time series ARMA model. Early methods of estimation

of this model include those proposed by Durbin [9], [10], and

Walker [30], [31]. Durbin's method relies on approximating the moving
average process V. = €; + g Yi€¢-1 by a high-order autoregression,

1=l

while Walker's procedure maximizes, with respect to the a and v,,

i
the approximate likelihood function of the first n sample serial
correlations of y,. More recently, Hannan [13], Clevenson [T7], and
Parzen [24] have constructed estimates based on Fourier transformation
of the data and spectral methods. Akaike [1] has shown that Hannan's
procedure is approximately a Newton-Raphson method in the frequency
domain, while the methods of Clevenson and Parzen are approximations
to the method of scoring in the frequency domain (using an alternative
parametrization of the moving average process.). The method of Box
and Jenkins [5] is to maximize the likelihood function by computing
its value at a grid of trial values of the parameters. They also
consider nonlinear least squares estimation of the parameters by
numerical methods. Anderson [4] estimates the parameters using the
method of scoring and Newton-Raphson methods (in the time domain)
under the assumption Yo = Y 4= see =y1_r=0 and Cn™e g =eem =
The method that will be presented later in this paper tor estimating
the more general linear model (3)-(4) is related to Anderson's method

for this special case.
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For the model (3)-(4) containing exogenous variables,
methods of estimation have been presented only in special cases.
For the difference equation model (3) with pure autoregressive errors
in (4), Wallis [33] has suggested an Aitken generalized least
squares estimator of the parameters in (3) using an estimate of the

covariance matrix of the error term u However, as noted by

&
Amemiya and Fuller [2], Maddala [21] and others, this method is not
asymptotically efficient due to the presence of lagged values of

the endogenous variable Yyt @as regressors. Recently Hatanaka [17]

has presented an efficient two-step estimation procedure for this model
which is identical to the procedure that will be proposed in the
present paper for this special case. It will be shown that Hatanaka's
procedure is approximately a Newton-Raphson method in the time domain.
For the special case of a moving average errors model in (4) with
equality of moving average and difference equation coefficients (i.e.,
the distributed lag model with Ty - -ai), Dhrymes [8] has presented

a method of estimation based on Newton-Raphson techniques which is
similar to the method to be proposed. Estimation of the model
containing a general moving average errors process in (4) has been
considered by Hannan and Nicholls [16] using Fourier transformed

data. Phillips [25], Trivedi [29], and Hendry and Trivedi [18]

have estimated this same model by iterative solution of the maximum
likelihood equations, their methods being somewhat similar in this

special case to the method to be presented in this paper. An excellent

summary of methods of estimation of the difference equation model (3) with

moving average disturbances in (4) is provided by Nicholls, Pagan,

and Terrell [23]. Box and Jenkins [5] and Pierce [27] have considered

b ————————- A L —————— 3 W B v




the estimation by iterative nonlinear least squares methods of
a general transfer function model which is similar but not identical
to the model to be considered here.

The purpose of the present paper is to obtain an estimation
procedure for the linear time series model (3)-(4) which is
asymptotically efficient yet computationally simple. The method
to be proposed uses the maximum likelihood approach and is based
on Newton-Raphson techniques applied to the likelihood equations.

The resulting "Newton-Raphson" estimator is shown to be asymptotically
equivalent to the maximum likelihood estimator and to possess a

limiting multivariate normal distribution.

2. THE METHOD OF ESTIMATION

For the estimation of the parameters in the model (3)-(4),

let us suppose that the observations

Yigr Fp_qs sV pr Kpgooe oo Xppo are available for t=1,...,T.

To motivate the estimation procedure we will assume the ¢ are

t
normally distributed and use the maximum likelihecod approach. To
simplify the form of the likelihood function certain assumptions
will be made concerning the initial observations and disturbances.
This is.necessary due to the dynamic time series structure of the
model, and in particular to the complicated form of the inverse of
the covariance matrix of consecutive observations from a moving

average process. First, we consider the initial observations

yl-r"“’yO""’yp as fixed, and estimate from the likelihood




function conditional on these values. Second, we assume that

the initial disturbances . s € are equal to their un-

€p+1—q"' D
conditional expectations, which are 0. Then introducing the

(T-p) x (T-p) lag matrix L which has 1's on the diagonal
directly below the main diagonal and O's elsewhere, we define
the (T-p) x (T-p) matrix

1

q
G=I+ 2 L

Y
i ol

4
) T-p-1 i
(Note that by condition (iv) of Section 1, G~ = z 6,L.)
1=0

Thus defining the vectors

Y = (yp+1,...,yT)', X = (xp+1’i,...,xTi)', (i=1,...,k),

U= (uppqseeeaug)’s € = (e q00nesep)’s

we can express the entire (modified) model in vector form as

k
- = % Bixi + U,

r
(7) Ye X'
= 1=1

i

P
(8) U= % L%,

.
1=1 f=1 1

where 1t should be noted that £Y = (yp""’yT-l)" LU = (up,...,gT-l) ’
while L& = (O, ep+1”"’€T-1)l' The equations (7)-(8) can be

written more compactly as

k
9 A()Y = = B.X, + U,
(9) )Y = 2 BiX




On the assumption of normality of the e the (modified)

t’

likelihood function of the observations yp+1,...,yT, given

yl-r""’yp’ is

1 1 TR [ |
F = - (g(z)u)'¢' """ (2(2)U)] ,
o BB 2T | 2o s e

where U 1is expressible in terms of the observable quantities Y

and X, through equation (9). Then using the fact that

Al o) m

g3 . S et e 2 9 =T,
3V, 3v, 3V,
we obtain the partial derivatives
dogF . L. (Me)Y)'e’ oM (B)Y), (m=1,...,7),
A o
m
alogf . L. (g)x) '’ e e)) , (med, ... k),
aam o
d1logF 1 m -1,-1
'SEEL' - =y (™)'’ TT6T (g(2)U) , (m=1,...,P),
m

. I Y e s o amnp —

:




dlogF _ _1
aYm o

s (B2)0) ¢’ "G e gy, (met,...,q).

Defining the vector

8 = (al""’ar’ 81""’Bk’ ¢1,...,¢ s YyseeosY

p q)

and the matrix

W= (28(L)Y,...,278(2)Y, (L)X, .-, 0(2)X,2U, . .. ,2PU, Le, . ..

we can express these derivatives in vector form as

Al e
(11) a;:gF - = w'e' e g)v).
(0]

Setting these derivatives equal to 0O leads to maximum likelihood
equations which are nonlinear in the parameters 6. Thus these
equations can only be solved by numerical procedures such as the
Newton-Raphson method. The Newton-Raphson method for solving

equation (11) is based on the Taylor's expansion

3logF _ 2logF , 2°logF (oo 6.
20 30 o, 2029’ g% -
where “6*-—6&'5}% -90“ and ||.|| denotes the usual Euclidean

norm. The Newton-Raphson equations for an approximate maximum

likelihood estimator 8 are

2
(12) - 3 logF (¥ -0, « LU
’ 0 ’
30936 8 38 a
0] 0]




9.

where 8 is an initial estimate of 8. Thus the Hessian of

% 321ogr
log F, ——-13?— , plays a dominant role in the Newton-Raphson
3639 o
method. It can be shown that an approximation to - 3 log¥ is

3636 '
given by —ég w o' "totw. Tnis approximation involves the omitting
o

of certain terms in the Hessian of log F which, when divided by T,
converge to O 1in probability as T->wo. We will express this

"asymptotic” approximation as

2
(13) _3TlogP . L ygi-lgly,
3638 o

To obtain the Newton-Raphson estimator of 06, we assume

that we have an initial estimate,

eo == (al""’ar’ gi,-’.,ﬁk, Bi!"'JBb) ;i;---,Yq)l, which is

.

a consistent estimate of § to the order T ¥ in probability, i.e.,

8- 8 = Op(T"). This estimate may be obtained as follows:

r
equation (7) using the method of instrumental variables estimation.

(a) Obtain consistent estimates Ei,...,a X §i,...,§k from

(See Liviatan [20] and Dhrymes [8], Chapter 5). Then compute

the residuals

™M=

r
b Tl L

: 1§ixti, (t:l,...,T).

1 i

(b) Using the calculated residuals u,, We obtain consistent
estimates of the autocovariances o(s) = E(utut_s), 800,15«

of the up as




(c)

- L = (§, -8)(",_ -0)=c(-s), (s=0,1,...,p+a),
s

T
where u = i 5 u,. We then estimate the parameters ¢i
T =

consistently by solving the Yule-Walker type equations

c(s) - Bic(s—i) = 0, (s=q+1,...,q+p)-

N Mo

=4

Having obtained the estimates Bi’ we form

p p
c (s) = 3z by B B.Z C(S+,j-‘) = C ("S), s=0,1,...,q, where
¥ 3=0 4=0 Y ¥

BO = =1, and

q A q
1 Se JEEE [c, (0) +2 2 c (s)cossh], -mQrr.

2r s=-qQ 2w s=1

These are consistent estimates of the autocovariances and

spectral density, respectively, of the moving average process

q
vV, = €, + 2
= LA ]

may factorize this in the form

Yi€eqr If T (X)) >0 for -m<A<m, then we

o > Sy 2
fv(x) i s Yheihll s
2m h=0
where the ?h are real with Vb::l. The consistent estimates
Vh are obtained as the solution to the equations
R i R RS
CV(S) = g bk Vh Yh+S ’ (h=0,1,---,q)’

which may be solved using an algorithm of Wilson [35].
Consistent estimates of the Yy, may also be obtained by a metihod

which does not require the factorizing of the spectral density

?v(x) (see Hannan [13]).

e ————— R T T—




Now we let

A(#) =1-32-... -3,
bt AR
G =14 Z Yy TS
i=1

U ( s 7

« BLyr- = B.%

ful LW

W = (ia(i)Y, v e ,ir@(i)‘f,a(i)xi, .

Then using (11) and (13) in

Newton-Raphson equations for

€

24.

B(L)=1-BL~-... -Bpgzp,

-t ip)v ,

S B(2)%, 20, ... 27T, LE,...

equation (12), we obtain the following
8,

st

W ENG -y = WD)
Since
£ g K p $me
Wo,+P(2£)T = = a g)Y+ = B, F)X; + 2 LT
1=1 i=1 1=1
N S .
+ 2 YiLie + BT
i=1

F)(x-T) + T-¢ + B(2)T

F(2)Y + U-¢,

the Newton-Raphson equations can be written in the form

(as) 7 ehn - e et @)Y+ v - 9).

The Newton-Raphson solution

8 to equation (14) can be interpreted

as the generalized least squares solution to the identity




48,

r p El q ps! .
- = a2 B)Y+ B BL)X, + = LT+ = v,L'T + Be
1=1 i=1 i=1 i=1
P . q &
+ iZl(Bi--ﬁf.l)(aCiU_:CiU) + ¥ (y1 -Yi)(Lie-Lie),
= i=1

where the last two terms on the right hand side of the equation are
q

-

to be neglected and the error term Ge = € + = YiLie is treated
i=1

as having covariance matrix o°GG" .

We conclude this section by discussing briefly the computations
that are needed to complete the estimation procedure and obtain the
estimator 8 as the solution to equation (14). Once the initial

estimate eo and the residuals Et have been obtained, we compute

: B
iil 1¥-1 for . t=prl-p, ey T,

a(i)yt = yt =
and similarly compute a(i)xti, fel,...,E, and a(i)ﬁt for
t=p+1,...,T. Next we obtain the vector ¢ = 5'15(£)5 recursively

from the equation Ge = @(£)T as

-é-t = a(t)at % for t=pi+l,...;T,

I ™MQ

3
toq TiTte1

—~

1
where ¢ € = 0. Then forming the matrix W as

p+1-q = LI p

defined above, we compute the columns of the matrix of "independent"
variables W = G W recursively from GW = W similar to the

computation of €, and we also compute the vector of the "dependent"




variable ¥ = 5_1(5(£)Y + U-€) recursively from
GY = J(£)Y + U-€. Finally, the estimator 8 1is simply the

least squares solution to the regression of ¥ on W, 1i.e.,

3 = (W'®)te'e

5. THE ASYMPTOTIC DISTRIBUTION OF TH

&3]

ESTIMATOR

Since the exact finite sample distribution of the proposed
estimator & 1is too complicated to be obtained in closed form,

we Will consider only asymptotic properties of the ectimator as

T+». To describe the asymptotic distribution of the estimator @&
we introduce the matrices M, N, I, H, 2, K, £, T, and Q@ whose
(m,n)th elements are defined respectively by
= I " .\—'. nt X ot
4 = "Lipt =l 3 o R R o8
“m-n T“—‘ 5 J
THe oY
q .
o R LN - A ./ il o \ %
e G G { = 2. A(#) £ ¢2(£ )
'j=l J (%
o IA(Q:-)\’:' ‘_/"1—'"!‘ ’ Fs &
= —— 2 d\.;.‘F\_‘\-.: ,[”":‘\zl’, s Ty
B R N e SR - R ey 5
[A(e™") [T IT(e™™) ]

- ‘{ - ™ A 1
ke <« =L gibe g bt =k ™ - e 1
v = 1im =( £ 8,A(2) €2(2)X,)' G TG T(HL)X
mn m -'_1 J . L -
Tro - 97
! . P & PR
G (2" | e 134
& J 3 TR T s Sl o et ke
J=1 Y =T A(e )l.{c )!

(.'?‘.:l,...,!‘; :‘l=l,--.,‘ﬁ),

V TR T 3




- -
“ el
~ - U I
\..:- - il L & s
s rem . 5 " -
. : . A - -
- o * ol e .
. “ . - - .
- —~ - 5 . .
o Y -~ ‘ . -
] ~— ] ' . -
£ .J 9] 1 I
- - - = -
g 1 £ I — =
—t —_— £ w =]
~ . 3
- =
A .
P 1 !
o (&) 2
wl\‘ -l rs « 1
] L | 1
< ! ~
r ~ ., r
= 5 - . ¢
. = & - 3 w3
-t - o —~ N
| o~ £ hE i i :
) b .4& = < ,( - )
=) r. — &) J,~. ey ... . H‘/ _
[ o B W s MJ~ v 3 W £ ~
~ i e — —~ - . g
(&) 3 Y e % 5 T & MM TL,
~ | ] el ™~ s —~ ool /V .
—~ o o L I qT 4 o ~ | wd iy
" o’ = ~ . . avko 2 “
w/.m. e — W ! ulm [ » 41 b ©- -
: ~ & 2 N = =
e —~ ~< 1l il N .n
W ol ot ! <L <
o a Q . - i ]
- — (B8]
2 = -t (]
T 2 fs | ~ b t | =~ -
Al F - _ ' Al = o
¢ 8 c

£ . = SR £ | - .
wi T k& ) =1 B4 o} AV w3 2 Bl N A 2C %,.
~ & < J ~ &

"
.l
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1 1
-~ 11 S P T S
To.n® Hn =EHTLe) G 0 (L7e)]
T>e ~
2 ol ‘~'“.-':“A
== <1 (-v~ O ,:)'
= el T S3 . 0=l #
2 -7 iT(e )|
1 m >
= m = B0 e B LNy PO
W oy ™ —E((£7U)"G"T 677 (L") ]
o T
_2 :!T »3:.\".~: \'\
= — ) 3X m=1, D3 h=l, q
- A -/ =
T -r Gie " )T(e

Then we can state the fcocllowing

Theorem. For the model (1) and (2) under assumptions (1i)-(1iil)
given In Sectlon 1, let ® denote the estimator of

P = (al,...,ar, Byserv28ys ¢1""’¢0’V1""’Vq>l as obtained from

equation (14). Then the distribution of /T (8-8) converges to
a multivariate normal distribution as T+« with mean vector O

and covariance matrix equal to

(16) 02V-1 = 1 0 0
g X 0 2
Tk » (|

Before discussing the proof ot the theorem, we make the

following comments:

(a) The matrix V defined by (16) can be seen to equal

e - A . I S AT I I VTR




16.
2 2
Jim = BWE M) « 2 - L pdiogd,
g b 3626

Thus the asymptotic distribution of § 1is identical tc the asymptotic
distribution of the maximum likelihood estimator based on the
assumption of normality of the €¢s SO that 8 1is asymptotically
efficient relative to the maximum likelihood estimator when the
disturbances are normally distributed.

(b) The proof to be given will show that & converges to 8 in

probability as T = «.

(c) An asymptotically efficient estimate of 02 is given by

0\2 1 k ~ ,-\,-1 -1 - K ~ "

o= —(AR)¥()Y- = B, BH(£)X,)'G G (A(2)3(2)Y - = B,B(2)X,),
T-p i=1 i=1

e

where the denotes that these quantities are to be evaluated

at B. The estimator 0° will be asymptotically uncorrelated with

8. Similarly, the covariance matrix of 8 can be estimated by

P e
(d) The asymptotic properties of the estimator & do not require
an iterative procedure, only an initial consistent estimate. However,
in practice one may want to iterate the least squares solution to (14).
In particular we suggest a second iteration so that an asymptotically

efficient estimate of the covariance matrix of the estimator

is obtained simply as a by-product of the Teast squares estimation.

(e) As we have mentioned in Section 1, the estimation of various

special cases of the model (1)-(2) has been considered by others.

- — — — - - e —————— B e AR SRS S S —————
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We now compare the estimator proposed in this paper with some of
the previously proposed estimators for these special cases. For
the time series ARMA model
A(:&)yt = F(£)€t,

equation (15) reduces to

Q

s o e i i | o~
¥4+ 2 viL e = X afﬁ Yk R viL € + Ge +
i=1 i=1 i=1 i

I MO

The generalized least squares estimation procedure which results
from this equation is similar to Anderson's (see [4]) Newton-Raphson

method except for the treatment of initial values of the Vs y I - TR

Anderson uses LiY in place of 2°Y. In the distributed lag model

A(L)y, = 2 2 ByXgy + A(L)ey,

equation (15) takes the form

k

Ly -1e) + Z 8,X; + Ae -

1z (
1 1 fut L 1=1 i

e r
Y- 2 a,L’e= 2 a

: (@, - a;) (L€ - L7e),

N ™M

d

r
where A =1- 3 ai 11, Tne estimation of this equation by
=X

generalized least squares is related to a method suggested by
Dhrymes (8], Chapter 9. For the general moving average errors model
k
A(aﬂ)yt = iilaixti + F(i)et,

the identity (15) becomes




i8.
- S r 1 K q S
Y+ I ¥, L'e = 2 afﬁ A Bixi + Z viL € + Ge

ful] * 1wl 1=1 gt

o Ly g

3% (vi-y.)(Lie - Lk}
4 B
l=1

The estimation of this identity by generalized least squares is
similar to the method of Phillips [25] except for the treatment

of the values of the initial disturbances e l.e., Phlllips

t’
considers these values as parameters to be estimated. Finally, for

the pure autoregressive errors model

k
A(i)yt = 2 B.X

+ U
=t >

g1 T By BEIR, > ey,

Hatanaka [17] has suggested a method identical to the least squares
estimation of the identity

L : P
@, PL)Y + = eiE(i)xi + %

¢f£iU 4 €
i i=1 i=1

P r
)Y + = F2W0- =
i=1 i =

i

+ 2 (B, -4,) (£ T-2D),

i

N Mo

L

which is simply (15) in this special case.

Proof of Theorem: We shall not go into great detail here but merely

give an outline of the proof. First, we can ignore the effect of

the modification of the initial disturbances ¢ and hence the use

t’
of the lag matrix G 1in place of the lag operator TI'(£), since

the modification has a negligible effect as T » » and the asymptotic

properties of the estimator are not affected by this modification
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(see Anderson [4]). Then using the (modified) identity (15)

and equation (14), we have

(17) 8 = (W et we et By + U-9)

@ et wetet (W + e

(By - #,) (£'T-2') +

: : (7, - vy) (LT -Lre))

3
1

n Mo
n MQ

1

It follows that

(18) /T (8-9) = = W’G‘"lc‘im'l ;e W N
iy \/T_

p
c Ewetetnt .

VT (B, - 8= W et (2T -2ty
T i T

1

3

N ™M

VT (7, -vp= walette - Lhe)).

=1 1

Now each of the termsvT (8, -4,)- - W'@'-la-l(iiU-iiU) on the
I

right hand side of (18) has a probability limit equal tc O as
T>w. This is true since w/T_(Bi-¢i) is bounded in probability

as T->o by the consistency of Bi’ while = W'G'-ia-i(iiﬁ-ilU)
b s

converges to O 1in probability as T->«, again by consistency of

the initial estimates. The same argument also applies to the terms

involving Vi on the right side of (18). Hence we can conclude that

the entire second term on the right hand side of (18) converges to

0
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in probability as T-+>wo, since we will show that the matrix

(£ W'a"1§—1W)'1 has a finite probability limit as T->ew. It
T

also follows by the consistency of the initial estimate eo that
if the matrix * w'c'~1glw possesses a finite probability limit
s
=4 o ~/ s =l=1- >
as T>w, then the matrix = w'c¢' ¢ tw| = Lrwg'toly win
s eo T
have the same probability limit. And finally, the limiting

distribution of the vectorw/é W3 ¢ will be the same as that of
i

w'G"le, since the difference between the two vectors,

~e -
(GW-a lW)'e, converges to O 1in probability as T-=>w. This

iilw f%IH

follows from the fact that all the elements in the vector of difference
above are essentially in the form of products of two terms, one of

which involves ~/T times elements of the difference (601-6) and

the other of which involves elements of the vector X W’G"le. Then
i
since plim 2 We e =0 and A, 1s a consistent estimate of 8
Sl T

to the order T'é in probability, arguments similar to those

used for the other terms in equation (18) can also be applied to the

vector of differences = (ahiw-G-lw)’e. Thus we see from the above

arguments that the limiting distribution of +/T (8 -6) will be

identical to that of (= w'c’ tg™t )-1 L wa' le. Hence it follows
s
that the results of the Theorem will be established once we show that
(1) pitm Zw'e'lelw - 11m LEmwe lelw = v,
ZPrw P T+e T




21.
where the matrix V 1is defined by (16), and

(I1) - W'G’-le has a limiting normal distribution with mean

vector O and covariance matrix equal to 02V.

Proof of (I). We consider the probability limit of a typical

element of the matrix = W'G' ¢ lw. For example, using equations
T
(9), (10), and (5), the fact that E(xties) = 0 for all
i as=t;0:8. 0« @Od 1=t 0 K, - We have
02 6210 F
(19) 1im = E(- 22287
R T R BYnBam
- 1im L E[(£L(2)Y) ¢ "t (1Pe)]
dite e
1 oo m, -1 .
= 1im = E[( = B,Z A(2) "F(L)X; + £ A(£) " 4(2)V)
e A i=1
'Gl-lG—l(Lne)]
- lim E[(&mA(i)'ie)'( '1Lne)]
> 1
1 T t-p-n-1 ©
= 1lim = E[ P> z Z 8 \_ € €
T> o T tepiniid | G0  wep T ¥ SRSl Geley
( t-p-n-1
uio 6uxu+n-m’ for m< n
2 w
- lim &= 2
T=> o T t=p+n+l t-p-n-1
EO 5u+m-nxu’ for m > n
\

- W‘" — e s 1o 4
kS ! "




T-p-n-1 22.

g2 s (T-n-p-u) 8 X . . g FOr ™ < B
= 1lim — u=0
T> o T
-p-n-1
; (T-n-p-u) 8 .0 My for m>n
=0
0
b 6uxu+n—m’ for m<n
o u=0
= 0
(o o]
b 6u+m-n " for m>n
u=0
2 T o1(m-n)x

Io

T (m=l,...,r; N=1,...,9).

In obtaining the above limit, we nave used the fact that the
Cesaro summation of a convergent series converges to that sum (see
Anderson [3], Lemma 8.3.1). Also, to obtain Noon as the probability

1imit of the quantity in (19), first we have

(20) E[%(,emA(,g)-lg;(,g)xi)'G'-1G-1<Lne>]2

iy t-p-n-1 t-p-1

1 -1 2
==, E[ 4 b 5 6 8 A(L) “Z(£)x € ]
T2 t =p+n+1 a0 -0 u v t-m-v,i " t-n-u

1 T t-p-n-1 s-p-n-1 t-p-1 s-p-1
- = Z Z z Z b éué.bvél

T t,s=p+n+l u=0 j=0 v=0 4=0 J
T TR | T




e
a(2) () x a(2) tg(2)x E(e ¢
t-m-v, i s-m-4,1 t-n-u s-n-j
02 T t-p-n-1 T-t+u t-p-1 t-u+j-p-1
= 2z 2! P b A 6 6.6 6
;g t=p+n+1l u=0 J=0 v=0 L=0 u'givea

a2) g(2)x

t-m-v,1 t-u+j-m-£, 1
Hence (20) is less than
o2 o 2 oo 4
— max | A(2) g(i)xt-m,il 2 AR |6u|)
T p+L<ECT t=p+n+l u=0
02 1 2 00 4
< £ max  late) H@)x, o 4l (2 5,1)
T p+iCECT B u=0

which goes to O as T > » because of conditions (i1) and (iii)
of Section 1 (see also Anderson [3], Lemma 2.6.1). Thus it follows
by Tchebychev's inequality that the first of the two terms in (19)

converges to O in probability as T » «=. The second term in (19)

is
~ ax t-p-n-1 %
(21) z (imA(i)-le)l(G 1Ln€) = z = z = 5u)‘vet-n-uet-m-v :
P T t=p+n+l u=0 v=0

Now for fixed v = 0,1,...,

1 % t-p-n-1
= z b
T t=p+n+l u=0

1 A t-p-n-1
L= z b
T t=p+n+l u=0

k 6uet--n-uet-m—v
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so that
(22 v Bl EiE : t'p;”‘l i ;
8 T v=s+l t=p+n+l u=0 v u t-n-u t-m-v
< 1lim el s 16 ) =0
= v u s

s > o v=s+1

uniformly in T. Then Markov's inequality, P(|X]|>€) < E[x]
=
for any random variable X and any € > 0, 1implies that the term

in (22) converges to O 1in probability as s » «» wuniformly in T.

Also, the quantities

1 i t-p-n-1 1 T-p-n-1 T

= D 2 oL te € = - 2 b3 5 € €

T t=p+n+li u=0 Bt e ;i u=0 “=p+n+u+l o Sy
have probability limits as T > = equal to o26v+m-n’ for

v =max(0,n-m),... . Thus it follows rrom this last result and (22

(see also Anderson [3], Theorem 7.7.1) that the second term in (19),

it t-p-n-1 o
i 2 z Z O k€ €
T t=p+n+l u=0 g LY t-n-u-t-m-v

- T t-p-n-1
v=0 t=p+n+l u=0 u'v- t-n-u t-m-v

|
o e

T t-p-n-1
g Z z b 5 \._¢€ €
T v=s+l t=p+n+l n=0 u*v-t-n-utt-m-v

- e ——————— TR T
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converges in probability as T » o« to
lim > 6va+n_m, for m < n
g 8> e v=0
o S
lim AL sk for m > 1,
X b o vep YRRV =
whidlieh ds just Ko BB given in (19). (The argument used here is

similar to that given in the proof of Theorem 1 of Hannan and Heyde
[15], page 2060). The same type of argument may be used to

establish the probability limits for the other elements of the

matrix

4
-

Proof of (II): To establish the asymptotic normality ofx/% W'Gg' e

3

we consider the asymptotic behavior of a single component. For

example, again using (9), (10), and (5), we have

2

(23 L. 2R . L (£pleyy)iat e
Bam /T
- 2 ; B =£mA(£)'1¢(1)x )’G"le + («’mA(i)'le)’e]
T =1 T A y
A~ = 2 Z 6 B;AL L)x ) €
VT t=p+l o o hed T ) L) X men, 1) €
+ A(i)-let_met]
T ———— T —




26.
- = z [( 2 s 6 8. A(2) () e
T tmpil usd tei * * t-m-u,i’"t
n
Y uio xuet-m-uet]
S °°
A== Z 2z A€ €
VT t=p+l u=n+1 Y t-m-u-t
* Zpn + Ry
where
( s e
24) By ® RN
B tepr,
t-p-1 k £ "
e b Lt 2‘ 6uBiA(i) g({)xt-m—u,i)et 2 _Z M€ t-m-u€t
7=0 i=1 =0
(t=p+1,...,T),
and
(26 ARG - m
2 ) R = - z 2 X € €. .
L \/T t=p+1 u=n+l u t-m-u-t

Now for all T > p,

2 1 T ®
(27) E(Rpy) = = 2 TS TR TN R
RTn T t’S=p+1 u,v=n+l v t-m-u t S-m=V 8
4 T %
S Uy B -
T t=p+1 u=n+i %
o0
< Uu Z XE = Mn’
usn+l 4

e
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e
and 1im Mn = 0 since 2, xu converges. For fixed n, wtn
g e u=0
‘ has mean O and variance equal to
= t-p-1 k n o
2 -1 2 2 4 P
o, = ¥ S 6 B.A(Z) g(#)x 0 - a8 R S S
tn ‘1) j=1 Wi t-m-u, i ey B
The covariance between wtn and Wsn, t#s, 1s O and
E(WS | e R 2 42
.o e = X .
B%%nl€¢-1 ) Bl 121 usi ) ) t—m-u,l) =
W
e urvet-m-u€t-m-v
U, V=0
2(t-p-1 k ( '1Q( n
+ 20 pX S 6 B.A(2) Z)x s B A .
vl it 151 & t-m-u, i ) B t-m-u
T T 2
Thus letting Vg, = = s E(thlet_l,...) anda using arguments
T t=p+1

similar to those given in the proof of (I), we can see that as

£ =+ o V%n converges in probability to

. 2 2
(28) o = 1im E(Z
) n T—)w Tn)
= 1im E(V°
T + o Ih)

2 T t-p-1 k .+ B
- lin S - S b 6u81A(£) 1¢(=£)xt_m_u i)2 + 04 b Xi
T+ T tepsl u=0 i=1 » u=0
u_n
= ozuo + 0 Z xi,
u=0




. - —

,
s
=
o+
i
o)
-
'.
o

for any € > O, where I(.) denotes the indicator function.
Condition (29) can be shown to hold by the use of the same argument

as given in the proof of Theorem 2, page 2063, in Hannan and Heyde

[15]. (See also the proof of Theorem 2.6.1 in Anderson [3]).
Thus through equations (28) and (29), Zp, satisfies conditions (1)
and (2) of Brown [6]. It follows by Theorem 2 given there that 2

m
in

has a 1limiting normal distribution as T > o, with mean O and

: = : : : 2 B _
variance o_. Finally, using Theorem 7.7.1 in Anderson [3] and the
il

result following equation (27), we can conclude that

2

N R T e “tn ' B
+T aa VT “

m

has a limiting normal distribution as T > » with mean O

and variance equal to

~ ) n 0 ¥
o‘un + 1lim % iSw 02u0~+ou z xi = 0%u, + oM.

n - o uOu u=0

9

The asymptoﬁic normality of all other elements of = Wwe'"le can
be obtained in the same manner. A similar argument can also be used

to show that the limiting distribution of an arbitrary linear

combination of the elements of = W'’ le

s

1 1

/ / " e x
=C'Wa'""¢, with C = (ci.---,cr+k+p+q) an

arbitrary constant vector, is normal with mean ¢ and variance

02C'VC, where V 1s the matrix defined by (16). Then using the

e R R g

e pr———e

i

“
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continuity theorem for characteristic functions , we see that
. 1 1 a° 3logF
ZwWwo' Tte= - 22098" a5 a limiting multivariate normal distribution
vT VT 38

N(O,UCV) as T » o, and thus the theorem is established.
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